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Abstract A general framework for the design of adaptive low-dissipative high order schemes

is presented. It encompasses a rather complete treatment of the numerical ap-

proach based on four integrated design criteria: (1) For stability considerations,

condition the governing equations before the application of the appropriate nu-

merical scheme whenever it is possible. (2) For consistency, compatible schemes

that possess stability properties, including physical and numerical boundary con-

dition treatments, similar to those of the discrete analogue of the continuum are

preferred. (3) For the minimization of numerical dissipation contamination, ef-

ficient and adaptive numerical dissipation control to further improve nonlinear

stability and accuracy should be used. (4) For practical considerations, the nu-

merical approach should be efficient and applicable to general geometries, and

an efficient and reliable dynamic grid adaptation should be used if necessary.

These design criteria are, in general, very useful to a wide spectrum of flow

simulations. However, the demand on the overall numerical approach for non-

linear stability and accuracy is much more stringent for long-time integration

of complex multiscale viscous shock/shear/turbulence/acoustics interactions and

numerical combustion. Robust classical numerical methods for less complex

flow physics are not suitable or practical for such applications. The present ap-

proach is designed expressly to address such flow problems, especially unsteady

flows. The minimization of employing very fine grids to overcome the production
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of spurious numerical solutions and/or instability due to under-resolved grids is
also sought [79, 17]. The incremental studies to illustrate the performance of

the approach are summarized. Extensive testing and full implementation of the
approach is forthcoming. The results shown so far are very encouraging.

Keywords: Low-Dissipative Schemes, Adaptive Numerical Dissipation/Filer Controls, High
Order Finite Difference Methods, Linear and Nonlinear Instabilities, Skew-Symmetric
Form, Entropy Splitting, Summation-by-Parts, Integration-by-Parts, Wavelets,
Multi-Resolution Wavelets, linear and nonlinear filters.

1. Introduction

Classical stability and convergence theory are based on linear and local lin-

earized analysis as the time steps and grid spacings approach zero. This theory

offers no guarantee for nonlinear stability and convergence to the correct solu-

tion of the nonlinear governing equations. The use of numerical dissipation has

been the key mechanism in combating numerical instabilities. Recent nonlinear

stability analysis based on energy norm estimate [24] offers stability improve-

ment in combating nonlinear instability for long-time integrations and/or simple

smooth flows. These recent developments offer two major sources of stabilizing

mechanisms, namely, from the governing equation level and from the numeri-

cal scheme level. Employing a nonlinear stable form of the governing equation

in conjunction with appropriate nonlinear schemes for initial-boundary-value

problems (IBVPs) is one way of minimizing the use of numerical dissipations

[56, 55]. On the other hand, even with the recent development, when em-

ploying finite time steps and finite grid spacings in the long-time integration of

multiscale complex nonlinear fluid flows, nonlinear instability, although greatly

reduced, still occurs and the use of a numerical-dissipation/filter is unavoidable.

Aside from acting as a post-processor step, most filters serve as some form of

numerical dissipation. Without loss of generality, "numerical-dissipation/filter"

is, hereafter, referred to as "numerical dissipation" unless otherwise stated.

Proper control of the numerical dissipation to accurately resolve all relevant

multiscales of complex flow problems while still maintaining nonlinear stabil-

ity and efficiency for long-time numerical integrations poses a great challenge

to the design of numerical methods. The required type and amount of numer-

ical dissipation are not only physical problem dependent, but also vary from

one flow region to another. This is particularly true for unsteady high-speed

shock/shear/boundary-layer/turbulence/acoustics interactions and/or combus-

tion problems, since the dynamics of the nonlinear effect of these flows are not

well-understood [79], while long-time integrations of these flows have already

stretched the limit of the currently available supercomputers and the existing

numerical methods. It is of paramount importance to have proper control of

the type and amount of numerical dissipation in regions where it is needed
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but nowhere else. Inappropriate type and/or amount can be detrimental to the

integrity of the computed solution even with extensive grid refinement.

The present work is a sequel to [82, 83, 63, 65]. It is an expanded version of

[84]. The objective here is to propose a rather complete treatment of the numer-

ical approach based on the four integrated design criteria (1)-(4) stated in the

abstract. The key emphasis here is to describe and illustrate with examples on

an adaptive procedure employing appropriate sensors to switch on the desired

numerical dissipation where needed, and leave the rest of the region free of
numerical dissipation contamination, while at the same time improving nonlin-

ear stability of the entire numerical process for long-time numerical integration

of the complex multiscale problems in question. These sensors are capable of

distinguishing shocks/shears from turbulent fluctuations and/or spurious high-

frequency oscillations for a full spectrum of flow speeds and Reynolds numbers.

The minimization of employing very fine grids to overcome the production of

spurious numerical solutions and/or instability due to under-resolved grids is

sought [17]. It was shown in [56, 20, 83, 63] that conditioning the govern-

ing equations via the so called entropy splitting of the inviscid flux derivatives

[83] can improve the over all stability of the numerical approach for smooth

flows. Therefore, the same shock/shear detector that is designed to switch on

the shock/shear numerical dissipation can be used to switch off the entropy

splitting form of the inviscid flux derivative in the vicinity the discontinuous
regions to further improve nonlinear stability and minimize the use of numerical

dissipation. The rest of the sensors, in conjunction with the local flow speed

and Reynolds number, can also be used to adaptively determine the appropriate

entropy splitting parameter for each flow type/region. These sensors are readily

available as an improvement over existing grid adaptation indicators [20]. If

applied correctly, the proposed adaptive numerical dissipation control is scheme
independent, and can be a stand alone option for many of the favorite schemes
used in the literature.

Outline: A brief summary of linear and nonlinear stability and the logistics

of advocating design criteria (1)-(4) for a complete numerical approach are

discussed in Sections 2 - 4. Adaptive numerical dissipation controls for high

order schemes are discussed in Section 5. Some representative examples to

illustrate the performance of the approach are given in Section 6.

2. Conditioning of the Governing Equations

Traditionally, conditioning the governing partial differential equations (PDEs)

usually referred to rewriting the governing equations in an equivalent set of

PDEs in order to prove the stability and/or well-posedness of the PDEs. When
numerical methods are used to solve PDEs that are nonlinear, it is well-known

that different equivalent forms of the governing equations might exhibit dif-
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ferent numerical stability, accuracy and/or spurious computed solutions, even

for problems containing no shock/shear discontinuities. There are many con-

ditioned forms of the governing equations proposed in the literature. Different
conditioned forms of the nonlinear convection fluxes and the viscous fluxes

have been proposed for the incompressible and compressible Navier-Stokes

equations. Here we concentrate on the convection terms of these equations

and mention a few conditioning forms which are precursors of the so called

entropy splitting of the compressible Euler equations [83]. If a method-of-lines

approach is used to discretize these equations, the entropy splitting reduces to
the splitting of the convection flux derivatives. For the viscous terms, we only

adapt the method of preventing odd and even decoupling on all of our numerical

experiments whenever it is applicable [61].

The splitting of the nonlinear convection terms (for both the compressible

and incompressible Navier-Stokes equations) into a conservative part and a

non-conservative part has been known for a long time. In the DNS, LES

and atmospheric science simulation literature, it is referred to as the skew-

symmetric form of the momentum equations [4, 30, 5, 86]. It consists of the

mean average of the conservative and non-conservative (convective form [86])

part of the momentum equations. The spatial difference operator is then ap-

plied to the split form. From the numerical analysis standpoint, the Hirt and

Zalesak's ZIP scheme [27, 85] is equivalent to applying central schemes to

the non-conservative momentum equations (convective form of the momentum
equations). MacCormack [39] proposed the use of the skew-symmetric form

for problems other than DNS and LES. Harten [25] and Tadmor [73] discussed

the symmetric form of the Euler equations and skew-adjoint form of hyperbolic

conservation laws, respectively. Although the derivation in these works is dif-

ferent, the ultimate goal of using the split form is almost identical. This goal is

to improve nonlinear stability, minimize spurious high-frequency oscillations,
and enhance robustness of the numerical computations. The canonical splitting

used by Olsson & Oliger [56] is a mathematical tool to prove the existence of a

generalized energy estimate for a symmetrizable system of conservation laws.

For the thermally perfect gas compressible Euler equations, the transformation

consists of a convex entropy function that satisfies a mathematical entropy con-

dition. The mathematical entropy function, in this case, can be a function of the

physical entropy. Therefore, the resulting splitting was referred to as entropy

splitting by Yee et al. [83]. The entropy splitting can be viewed as a more gen-
eral form than its precursors which makes possible the L 2 stability proof of the

nonlinear Euler equations with physical boundary conditions (BCs) included.

The following subsections which were part of [65], provide more details.
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2.1 Introduction to skew-symmetric splitting

Consider a variable coefficient linear hyperbolic system

Ut + A(x)Ux = O a < x < b, (2.1)

where U is a vector and the matrix A(x) is symmetric. Define the scalar product

and norm,

(U,V) = U(x)TV(x)dx, Ilgll2 = (U,U). (2.2)

It is possible to obtain an energy estimate for the solution by integration-by-

parts. To do this, write the system in skew-symmetric form,

1A(x)Ux-_AxU=O. (2.3)Ut + (A(x)U)x + -_

Start from

2dtllgll 2 - (g, gt) - - [(g,(A(m)g)x) + (g,A(m)gx) + (g,&g)]
(2.4)

and perform the integration-by-parts

(U, (A(x)U)_) = -(Uz,A(x)U) + [UTAU] b = -(U, AU_) + [UTAU]_,

(2.5)

where the last equality follows from the symmetry of A. This gives the energy
norm estimate

1 d 2 1 T A b
2dtllU I =-_([U U]a - (AxU, U)), (2.6)

which is a standard result that has been known for a long time. It can be found

in many textbooks on PDEs, e.g., [19].

For semi-discrete difference approximations, the same idea can be used.

Introduce the grid points xj = a+(j- 1)h, j = 1, 2,..., N on the interval [a, b],

with uniform grid spacing h = (b- a)/(N - 1). Apply a spatial discretization

to the skew-symmetric form

dUj(t)
_ 1A(xj)DUj - 1D(A(xj)Uj) + _DA(xj)Uj (2.7)d------_- --2 -2

where D is a finite difference operator, approximating the spatial derivative.

We will obtain an estimate in a discrete scalar product,

N

(U, V)h = h _ oi,jUiVj, (2.8)
i,j=l
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in the same way as for the continuous case. Here _i,j a positive definite matrix

(identity matrix for the L 2 norm). The estimate becomes

21d llud2h-- -½((U, ADU)h + (U,D(AU))h) + _(U,D(A)U)hl __
1

I (UT ANUN -UITAIU1)+ -_(U, D(A)U)h,2

(2.9)

where we now assume that the difference operator has the summation-by-parts

(SBP) property,

(U, DV)h = -(DU, V)h + UNVN -- U1V1 (2.10)

with respect to the discrete scalar product. The SBP property here is the discrete

analogue of the integration-by-parts energy norm property. One simple SBP

operator is given by

DU1 = D+U1

DUj = DoUj,

DUN -- D_ U N

j = 2,3,... ,N- 1 (2.11)

for the scalar product

N-1

h U h
(U, V)h = -_ 1V1 + h _ UjVj + -_UNVN. (2.12)

j=2

Here wedefine Do Uj -(Uj+I-Uj_I)/(2h),D+ = (Uj + I - Uj ) / h, D_ Uj -

(Uj - Uj-1)/h. Higher order accurate SBP operators can be found; see [70].
For periodic problems, the SBP property is usually easy to verify. In this case

the boundary terms disappear.
The crucial point is the splitting of the convective term,

1 1 1Agx = _Agx + (Ag)x- -_A_U, (2.13)

into one conservative and one non-conservative parts. The difference approxi-

mation is applied to the split form. The skew-symmetric splitting for difference

approximations has also been known for a long time. It was used in [30], and

[31] to prove estimates for the Fourier method. See also [47], where SBP is

proved for the Fourier method and a fourth-order difference method, when the

boundaries are periodic.

Although this L 2 estimate does not give uniform boundedness of the solu-

tion, it has turned out in practical computations that methods based on skew-

symmetric splitting perform much better for long-time integrations than un-split
methods.
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Actually, for a symmetric hyperbolic nonlinear system with A (x) replaced by

A(U(x)), similar skew-symmetric splitting and energy norm can be obtained.
One of the earliest works on skew-symmetric splitting is Arakawa [4], where a

splitting was derived for the 2D Euler equations for incompressible fluid flow
in vorticity stream function formulation,

cot = Cycoz - Czcoy. (2.14)

Here co is the vorticity and _ is the stream function, such that the velocity (u, v)

is (-¢y, ¢x). In [4] it is shown that the approximation

1 (Dy _bi,jDxcoi,j - D_:¢i,j Dycoi,j ) +

½(Dx(coi,jDv¢i,j ) - Dv(coi,j Dx¢i,j ) )+

½(Dy (¢i,j Dzcoi,j ) - Dx (¢i,j Dvcoi,j ) )

(2.15)

leads to the estimates

dllcoll = (co,co )h = 0

(¢, cot) =0.
(2.16)

Here it is assumed that boundary terms are equal to zero (homogeneous). Dz

and D v denote finite difference operators acting in the x- and y-direction re-

spectively. The second estimate is related to the conservation of kinetic energy,

1 d 122 dt (I]¢y] + ]lCx][ 2) = -('4-',cot). (2.17)

The proof of the estimates only involves pairwise cancellation of terms accord-

ing tO the rule,

(u,D(uv))h + (u, vDu)h = 0, (2.18)

which holds for zero boundary data, if D satisfies (2.10). In [4], the operator

(2.11) is used. Note that the use of w and ¢ in this section pertains to the

vorticicity formulation symbols. In later sections, the same symbols will have

different meanings.

In [30], the inviscid Burgers' equation,

ut + (u2/2)x = 0 (2.19)

1
with the quadratic flux derivative split into 5UUx + _(u 2/2)x, is approximated
as

duj _ l (ujDuj + Du_). (2.20)
dt 3
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For this approximation, we obtain

ld 1
2dtllull 2 =-5((u, uDu)h +(u, Du2)h)=0 (2.21)

by using SBP on the last term. Again, boundary data is assumed to be zero.

The split form (Du 2 + uDu)/3 is also used in [58].

It is important to note that the split form is non-dissipative in the sense that the

highest grid frequency, uj = (--1) j, has derivative zero, and thus cannot be
seen or smoothed by the time integration. In addition, the difference operator

applied to the split form should be done with D on the non-conservative term,

and -D r, the negative adjoint of D, on the conservative term. However, since

even order centered difference operators are anti-symmetric, we write D in

both places. For odd orders of accuracy, the approximation should be done

analogously to the first order example,

duj_ 1 D_u_). (2.22)
dt 3 (ujD+uj -t-

2.2 Skew-Symmetric Splitting for Incompressible Fluid
Flow

For a 3-D incompressible Navier-Stokes equations of the form,

ut + (uTV)u = -Vp + uAu,
(2.23)

div u = O,

skew-symmetric splitting can be applied on the convective terms to estimate

the kinetic energy, uTu. Here the velocity vector is u = (ul, u2, u3) T, the

pressure p and the viscosity coefficient is u. In [86] and in [26] the three forms

(uTV)u

1
_((uTV)u + div(uuT))

l(v(uru) + u × v × u)2

(convective)

(skew-symmetric)

(rotational)

(2.24)

for the nonlinear terms are studied. They are equivalent to each other before

the application of the numerical methods. Although the skew-symmetric and

rotational forms are not in conservative form, they lead to conservation of kinetic

energy that is important for long-time integration. For the inviscid case u = 0,

when using the skew-symmetric form, we can estimate the kinetic energy as,

1 d (11uv/-ff_ull2) _ (Ul (Ul)t) -1- (u2, ('a2)t) + (u3, (u3)t) =2 dt

-(ui,_joj_) -(_,oj(_j)) - (_,o_p) = (2.25)

-(_, _joj_) + (oj_, _i_j) + (o_,p) = o,
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where the summation convention is used. We assume that boundary veloci-

ties are zero. Integration-by-parts used above shows that the three pressure

components are equal to (div (u), p), which is zero since the divergence is zero.
In order to carry out the same estimate for a difference approximation, we

should use the skew-symmetric form for the convective terms, and discretize

by a difference operator having the SBP property. The convective terms then

disappear from the estimate directly, without use of the divergence condition,

just as for the PDE. To eliminate the pressure term, it is enough that the pressure
derivatives and the divergence condition are discretized by the same difference

operator (or by operators that are negative adjoints, in the case of odd order of
accuracy). We end up with

ld

2 dt llui,j,kui,j,kIT 2h _-- 0
(2.26)

for the difference approximation in a discrete norm. Note that the inequality

(2.26) should really be an equality in the setting it is proved. Perhaps it is

possible to keep the viscous terms, and make it an inequality.
The discrete estimate can also be derived from the discretized rotational

form (as in [47]), but then the discretized divergence condition must be used
to eliminate certain convective terms. For this to be possible, it is necessary

that the divergence condition is discretized by the same operator as used for

the other convection terms. Results from using the skew-symmetric form are

compared with results from the rotational form in a turbulence simulation in

[86]. The skew-symmetric form is found to give more accurate results. It is

recommended that the pressure equation and the divergence condition should

be discretized by the same SBP satisfying operator (or SBP operator for ease

of reference), so that we can eliminate the term (ul,pz) + (u2,Py) + (u3,pz).

2.3 Skew-Symmetric Splitting for Compressible Fluid

Flows

Consider the equations of inviscid compressible fluid flow in one space di-
mension

pu + pu 2 + p = 0 ,

e t u(e + p) x 0

(2.27)

with p, u, e and p, the density, velocity, total energy per unit volume and

pressure, respectively. In [5], a skew-symmetric splitting of the convective
terms in momentum equation is used. This splitting was originally presented

in [16]. The discretization in [5] is made for a more general equation, but for
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the simple equation (2.27), it becomes

ej(t) D(uj(ej + pj)) 0
(2.28)

where we now only consider semi-discrete approximations. The skew-symmetric

splitting of the convective term in the momentum equation makes it possible to
estimate

d N N
2 -h E ujDpj + boundary terms, (2.29)--h __ pjuj -

dt
j----1 j=l

which is the discrete analogue of the estimate,

d

d_llpu2112 = -(u, px) + boundary terms,

obtained from the PDE.

(2.30)

2.4 Canonical (Entropy) Splitting for Systems of
Conservation Laws

The skew-symmetric splitting for the nonlinear incompressible and com-

pressible Navier-Stokes equations discussed above only involve the nonlinear

convective terms of the momentum equation, and not the entire inviscid flux

derivatives of the PDEs. Actually, for a general nonlinear system of conserva-

tion laws,

Ut + F(U)x = O, a < x < b, O < t, (2.31)

we can perform a skew-symmetric splitting of the entire inviscid flux vector

derivative F(U)x, if

1 A(U) = OF/OU is symmetric.

2 F is homogeneous, i.e., F(AU) = A_F(U), with/3 ¢ -1.

It is possible to show that

A(U)U = flF(U), (2.32)

by differentiating the homogeneity relation with respect to A, and setting A = 1.

Define the splitting as

1 A(U)Ux + 1+-_F(U)x = O.+
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We then can show that

ld 1
2dt U 2 = (U, Ut) = I+/3(U,A(U)Ux)- 1--_(U,F(U)x) =

1 (U,A(U)Uz)+ T_(Uz F(U))- 1-_[UTF(U)]ba = (2.34)1+/3

1 [V TAU]b.
1+/3

The two inner products disappear due to (2.32), and we are left with an estimate

of the norm of the solution in terms of the solution on the boundary, a so

called generalized energy estimate [56]. Olsson & Oliger [56] used the term

generalized energy estimate because the norm will, in general, depend on an

entropy vector W, but not the gradient of U in symmetrizable conservation
laws.

In [56] the splitting is first done without the homogeneity assumptions. In
that case, the entropy flux function FE(U)

/o'FE(U) = F(OU)dO (2.35)

is introduced. It follows that

F ff(U)U = -F E + F, (2.36)

so that

F_ = (FuEU)_ + FuEU_. (2.37)

If Fu is symmetric, then Fff is symmetric too, and we obtain,

(U,Fx) : + =
E b

-(Ux, F_U) -k- (U, F_Ux) -[-[UF_U]a = [UT F{EU]a.b

(2.38)

If the flux function F is homogeneous, F E is just a scalar times F, and we

recover the splitting (2.33).

In practice, the Jacobian matrix A(U) is not symmetric, especially for more

than 1-D. However, in many cases a symmetrizing variable transformation is

available. The estimate for the homogeneous case above and symmetrizing

transformations were given in [73]. In [56] the analysis is extended to non-

homogeneous problems, and BCs are discussed in greater detail using the so

called canonical splitting of the symmetrizable conservation laws. Formulas

for symmetrizing the nonlinear compressible Euler equations are given in [25],

and the corresponding analytical form for the canonical splitting of the perfect

gas compressible case is given in [20]. It was further extended to thermally

perfect gases and to 3-D generalized coordinates that preserve freestream in

[83, 77].



, i

12

Let the symmetrizing vector W be related to U via a transformation,

U- U(W). (2.39)

It can be proved that the existence of a symmetrizing transformation is equiva-

lent to the existence of an entropy function, E(U), with Euu positive definite.

The entropy function is a function such that

Et + FzE = 0 (2.40)

is an additional conservation law, obtained by multiplying the original conser-

vation law by Eu (U). F _ is the entropy flux, related to the entropy by

(FuE) T= ETFu, (2.41)

an equation which is overdetermined, and therefore does not have a solution

for all systems of conservation laws. Written in terms of the entropy function,
(the inverse of) the symmetrizing change of variables (2.39) is defined by W =

Eu(U). The change of variables OU/OW is symmetric and positive definite,

and the new Jacobian OF/OW is symmetric. If furthermore U and F are

homogeneous in W of degree/3, which is the case for the thermally perfect gas

Euler equations for any/3 # -1, the formulas become simple. In that case we

insert the change of variables into the conservation law and obtain

Uw Wt + Fw Wx = 0, (2.42)

and define the split form of the flux derivative [56]

1gt + Fz + i--_FwWx = 0, (2.43)

with/3 a splitting parameter (/3 = cx_recovers the original conservative form).
Here/3 # -1 and, for a perfect gas, /3 > 0 or/3 < "_ The theory only

I--q,"

gives the range of/3 and does not give any guidelines on how to choose/3 for

the particular flow. The vectors Fw and W can be cast as functions of the
primitive variables (p, u, p) and/3. From the study of [83],/3 is highly problem

dependent. Multiplying the above equation by W and integrating gives

-(1 +/3)(w, gt) =/3(W, Fx) + (W, FwWz) =/3(W, Fz) + (FwW, Wx).
(2.44)

Integration-by-parts in space gives

(1 +/3)(W, lit) = -[WTFwW]_. (2.45)

We thus obtain the estimate

e-(W,UwW) = (wt, uww) + (w,(uww)t) = (ut, w) + /3(w,ut) =dt

(1 +/3)(W, Ut) = --[WTFwW]ba.

(2.46)
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In order to have an energy estimate, the boundary term [WTFwW] b should be

of the sign that makes the time derivative of the norm negative. For stability

the entropy norm (W, UwW) should be bounded.

It is noted that the energy estimate can be shown to be identical with

d
f E(U) = [Fe]ba (2.47)

obtained by integrating the entropy equation (2.40) in space. It follows that,

WUwW = (1 +/3)E(U) [73]. We can show that for the thermally perfect

gas compressible Euler equations the mathematical entropy function can be a

function of the physical entropy. Therefore, the resulting splitting was referred

to as entropy splitting by Yee et al. [83].

3. Discrete Analogue of the Continuum

Standard stability guidelines for finite difference methods in solving non-

linear fluid flow equations are based on a linearized stability analysis. The

linear stability criterion is applied to the frozen nonlinear problem at each time

step and grid point. Most often the numerical BC (or boundary scheme), if

needed, is not part of the stability analysis. The preceding section summa-

rizes the historical perspective of entropy splitting of the fluid flow equation

related to stable spatial finite discretization without paying attention to numer-

ical BC. This section expands on stable finite difference methods that have a

discrete analogue of the conditioned governing equations IBVPs. For'ease of

reference, "scheme" or more precisely "interior scheme" here generally refers

to spatial difference schemes for the interior grid points of the computational

domain, whereas "boundary scheme" is the numerical boundary difference op-
erator for grid points near the boundaries. However, without loss of generality,

we also adopt the conventional terminology of denoting "scheme" interchange-

ably as either the "combined interior and boundary scheme" or just the "interior
scheme" within the context of the discussion.

The only tool needed to derive the norm estimates presented in the preceding
section was integration-by-parts. One main point in this section is that the same

norm estimates can be made for a semi-discrete difference approximations, if

the differential operators are approximated by difference operators having the

SBP property. Examples of this were shown in (2.16) and (2.21). Of course, the
other estimates in the preceding section can be carried over to a semi-discrete

approximation by use of SBP difference operators.
The discussion is divided into linearly stable and nonlinearly stable differ-

ence methods. It is important to point out that when solving the Navier-Stokes

equations with complex viscous shock, shear-layer, and boundary layer and/or
chemical reaction interactions, even after incorporating tools from recent de-
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velopments,thefinitedifferencemethodsconsidered,althoughmorerigorous
thanstandardalgorithms,areonlylinearlystableinastrictsense.

3.1 Linearly Stable Difference Methods

The most basic linear stability criterion is to investigate the behavior of the

difference method when applied to a problem of constant coefficients and peri-

odic boundaries. The Fourier symbol of the operator should be bounded. For

higher than first-order methods, a complication is introduced by the numerical
boundary treatment. Norm estimates, or normal mode analysis are normally

employed (See Gustafsson et al. [24]). With these methods it is possible to

prove stability for linear IBVPs. Difference operators having the SBP prop-

erty with numerical BCs included have recently received some attention. See

Strand, Olsson, and Nordstr6m & Carpenter [70, 53, 54, 55, 51]. As already

discussed in Section 2, the idea with these operators is to have the property

(DUj, Vj)h = -(Uj,DVj)h + VNUN - V1U1, (3.1)

where D is a difference operator approximating d/dx, including the accom-

panied boundary scheme. Typically D is a standard centered operator in the
interior of the computational domain, and has a special one-sided form near

boundaries. The discrete scalar product is defined by (2.12), and is weighted

by a positive definite matrix, or. For the standard L2-norm, a is the identity

matrix. In [53, 70], formulas for the norm and boundary modifications of D

are given which ensure the SBP property for operators up to order of accuracy
eight. SBP satisfying numerical BCs are very different from the traditional

numerical boundary treatment. For example, for a sixth-order central interior

scheme, the SBP satisfying boundary schemes involved the modification of the
central scheme at least 6 points from the boundary. The coefficients of these

SBP boundary schemes are rational and irrational fractions. The coefficients

of the boundary scheme are determined together with the weights, or, in the

scalar product, so that for each operator there is a particular scalar product in

which the SBP property holds. With the SBP property, norm estimates of the

difference approximation can be accomplished as the discrete analogue of the

continuous energy estimate of the corresponding IBVP of the PDE.

3.2 Nonlinearly Stable Difference Methods

When using a linearly stable method on a nonlinear problem, nonlinear in-

stabilities can appear. Instabilities can appear already for a linear problem with

variable coefficients. For variable coefficient problems, it can be proved that

numerical dissipation of not too high order will make the method stable. From

a theorem by Strang it follows that a finite difference approximation of a non-

linear problem is stable, if the variable coefficient linearized approximation is
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stable, and the solution and the difference scheme are smooth functions. This

is one reason for using numerical dissipation in practical flow simulation [24].

Before 1994, rigorous stability estimates for accurate and appropriate bound-

ary schemes associated with fourth-order or higher spatial interior schemes were

the major stumbling block in the theoretical development of combined interior

and boundary schemes for nonlinear systems of conservation laws. Olsson

[55] proved that an energy estimate can be established for second-order central

schemes. To obtain a rigorous energy estimate for high order central schemes,

one must apply the scheme to the split form of the inviscid governing equation.
A discrete analogue of the continuum using a semi discrete approach can be
written as

dUj(t_______)=________DF(Uj) 1 Fw(Uj)DWj. (3.2)
dt 1+/3 1+/3

Here, D is a difference operator, having the SBP property [55, 70]. The estimate

d (W, UwW)h -- --WTNFW(WN)WN -t- W1TFw(W1)W1 (3.3)
dt

in the discrete scalar product follows in the same way as for the PDE with

indices 1 and N the end points of the computational domain, and h the grid

spacing. Here the SBP satisfying difference operator, for example, consists of

central difference interior operators of even order together with the correspond-

ing numerical boundary operators that obey the discrete energy estimate. See

Olsson and Strand for forms of the SBP boundary operators [55, 70]. As noted

in Section 2, if odd order of the spatial discretizations are used, the difference

operator D in (3.2) should be modified. In this case, D should be employed on
the non-conservative term, and -D T, the negative adjoint of D on the conser-
vative term, i.e.,

dUj(t)dt - 1+/3/3 (-DT)F(Uj) 1+1 _Fw(Uj)DWj. (3.4)

3.3 SBP Difference Operators and Full Discretization

There are two additional difficulties when applying the above semi-discrete

SBP spatial discretization methods to realistic problems.

• How to impose given physical BCs without destroying the SBP property.

For example, assume that we are given a boundary value u(xl) = g

at the leflmost grid point of the domain at j = 1. Applying the SBP

operator at j = 2, 3,..., N, and imposing Ul - g would not lead to an
estimate, since the one sided operator that should have been applied at
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j = 1 is not applied. This in turn leads to additional non-zero terms in

the scalar product (e.g., from the operator at j = 2) which should have

been canceled by terms from the operator at j = 1.

• How to discretize in time. The semi-discrete estimates that show the

norm decreases, will not necessarily lead to a decrease of the norm in

a time discretized approximation. In many practical cases we do obtain

a small increase in the norm for the time discrete problem. However,

the stability is still greatly improved by use of entropy splitting and SBP

operators, when compared with more standard schemes.

Several methods showing how to impose the physical BC have been proposed

to overcome the first difficulty. Examples are the projection method [53] and the

penalty method called "simultaneous approximation term" (SAT) [10, 51 ]. For

comparison of these methods, see [69, 48, 29]. The methods given in [10, 51]

and [53] are based on linear properties and cannot be trivially generalized to

the nonlinear Navier-Stokes equations, except for certain special cases. One

such special case where the nonlinear case is covered by the theory involves

imposing velocity zero on solid walls, where the simple approach of setting the

velocity to zero after each time step coincides with the projection method in

[531.
In addition, when time-dependent physical boundaries are involved, an ad-

ditional complication arises, especially for multi-stage Runge-Kutta methods.

If the time-dependent physical BC is not imposed correctly, the overall order

of accuracy of the scheme cannot be maintained. Some systematic remedies

are proposed but are rather complicated for variable coefficients and even more
complicated for nonlinear problems. See [10, 8, 29].

For the full discretization of the problem, we should discretize in time in
such a way that the discrete energy estimate also holds. The obvious solution

would be to discretize in time in a skew-symmetric way, in a manner similar to

the spatial discretization, e.g.,

+ i-%U (W? W? =
- I@zDF(U )- I 4- Fw

(3.5)

where Dt is a difference operator acting in the time direction. However, it turns
out that the SBP property of the time difference quotient leads to a problem

which is coupled implicitly in the time direction. To solve it we have to solve

a nonlinear system of equations for all time levels in the same system, leading

to an impractically large computational effort. Furthermore, numerical experi-
ments shown in Sj6green & Yee [65] indicated that a bounded L 2 entropy norm

(W, Uw W)h does not necessarily guarantee a well behaved numerical solution

for long-time integrations. In other words, L 2 stability does not necessarily
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guarantee an accurate solution. In practical computations, the classical Runge-

Kutta time discretizations using the method-of-lines approach (which we used

for our numerical experiments) works well, but we have not been able to prove

a time discrete entropy estimate for this method. In addition, numerical exper-

iments shown in [65] indicate that the time discrete problem does not have a

decreasing entropy norm for all values of p. Numerical experiments in Yee et

al. [83, 61] also indicate the wide variations of the/3 value for a full spectrum

of flow problems. For example, if a constant p is used for problems containing
shock waves, a very large value of/3 is needed. Otherwise divergent solutions

or wrong shock location and/or shock strengths are obtained. In view of these

findings, employing a constant/3 (within the allowable range of/3) throughout
the entire computational domain appears not to be the best approach unless the

flow problem is a simple smooth flow. Studies in [83, 63] indicate that the split

form of the inviscid flux derivatives does help in minimizing the use of numer-

ical dissipation. What is needed is adaptive control of the/3 parameter from

one flow region to another as well as from one physical problem to another. We

caution that if the adaptation is not handled correctly, an abrupt switching of

the/3 can introduce spurious jumps in the numerical solutions. See [65] for the
discussion.

In our computer code for the numerical experiment, we have implemented
the sixth-order SBP operators by the projection and SAT methods given in [10,

51, 53]. They both perform satisfactorily, and no big difference in performance

has been observed between them. See Section 6 for a 3-D compressible channel

flow computation. We note that the majority of the physical boundaries of our

viscous models are not time dependent, and the loss of spatial accuracy due to

the multistage Runge-Kutta method is not a major concern.

4. Adaptive Numerical Dissipation Control

This section discusses the need for adaptive numerical dissipation controls

in addition to conditioning the governing equations. An advanced numerical

dissipation model for multiscale complex viscous flows is described.

The linear and nonlinear numerical dissipation (not filter) presently available

is either built into the numerical scheme or added to the existing scheme. The

built-in numerical dissipation schemes are, e.g., upwind, flux corrected transport

(FCT), total variation diminishing (TVD), essentially non-oscillatory (ENO),

weighted ENO (WENO), and hybrid schemes (e.g., those that switch between

spectral and high-order shock-capturing schemes). The built-in nonlinear nu-

merical dissipation in TVD, ENO and WENO schemes was designed to capture

accurately discontinuities and high gradient flows while hoping to maintain the

order of accuracy of the scheme away from discontinuities. These schemes have

been shown to work well in a variety of rapidly developing shock-shock inter-
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actionsthatdonotinvolvemultiscalephysicsor long-timewavepropagations.
Formultiscalephysicsthatrequirelow-dispersiveerrors,theamountofnumer-
icaldissipationbuilt intotheseschemesisnotoptimal.In addition,analogous
SBPtheoryfortheseschemesisnotavailable.Moreover,theyaremorecom-
putationallyexpensivethanstandardhighordercenteredschemes,andhave
severelimitationson theorderof accuracyin thevicinityof thediscontinu-
itiesandsteepgradientregions.Theinaccuracyof thenumericalsolutionscan
contaminatetheentireflowfielddownstream[14]. Although, the amount of
numerical dissipation is less than linear numerical dissipations, when applied

to convection portions of viscous flows, it conflicts with the physical viscosity

and can wash out the true physical steep gradient and/or turbulent structures.

Aside from this fact, viscous reacting flows are even more difficult to simulate

than non-reacting viscous flows. In the presence of numerical dissipations, even

what is believed to be the optimal amount for non-reacting flows might have

detrimental effects, e.g., wrong speeds of propagation and/or spurious traveling

waves [36, 33, 34].

There exist different specialized linear and nonlinear filters to post process

the numerical solution after the completion of a full time step of the numerical

integration. Since they are post processors, the physical viscosity, if it exists, is

taken into consideration. The main design principle of linear filters is to improve

nonlinear stability, to stabilize under-resolved grids [17] and to de-alias smooth
flows, while the design principle of nonlinear filters is to improve nonlinear

stability as well as accuracy near discontinuities. When discontinuities are

present in the solution, linear filtering and/or entropy splitting might not be

helpful or not applicable. The nonconservative terms of the entropy splitting

might lead to inconsistent behavior at shocks/shears [83, 63, 65]. See, for

example, [22, 17, 18, 76] for forms of linear filters, and see [82, 83, 63] for
forms of nonlinear filters. The use of the linear filter concept for smooth and/or

turbulent flows has been employed for over two decades [76, 2, 37, 18]. For

direct numerical simulation (DNS) and large eddy simulation (LES), there are

additional variants of the linear filter approach. It was shown in Fischer &

Mullen [17] that adding an appropriate filter can stabilize the Galerkin-based

spectral element method in convection-dominated problems. The Fischer &

Mullen numerical example illustrates the added benefit of the high-order linear
filter. See Section 5.5 for a discussion.

For the last decade, CPU intensive high order schemes with built-in non-

linear dissipation have been gaining in popularity in DNS and LES for long-

time integration of shock-turbulence interactions. Aside from the aforemen-

tioned short-coming of these built-in nonlinear dissipation high order schemes,

their flow sensing mechanism is not sophisticated enough to clearly distinguish

shocks/shears from turbulent fluctuations and/or spurious high-frequency oscil-

lations. In [82, 83, 63] it was shown that these built-in numerical dissipations
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are more dissipative and less accurate than the nonlinear filter approach of

[82, 83, 63] with a similar order of accuracy. It was also shown that these

nonlinear filters can also suppress spurious high-frequency oscillations. How-

ever, a subsequent study of Sj6green & Yee [65] showed that the high order

linear filter can sustain longer time integration more accurately than the non-

linear filter for low speed smooth flows. In other words, for the numerical

examples that were examined in [65], the high order linear filter can remove

spurious high-frequency oscillation producing nonlinear instability better than
the second-order nonlinear filter. Higher than third-order nonlinear filters might

be able to improve their performance or might outperform the high order lin-
ear filters in combating spurious high-frequency oscillations at the expense

of more CPU time and added complexity near the computational boundaries.

These findings prompted the design of switching on and off or blending of
different filters to obtain the optimal accuracy of high order spatial difference

operators as proposed in Yee et al. and Sj6green & Yee [83, 63]. The missing

link of what was proposed in [83, 63] is an efficient, automated and reliable

set of appropriate sensors that are capable of distinguishing key features of the

flow for a full spectrum of flow speeds and Reynolds numbers.

We propose to enhance the conditioning of the equations with an advanced

numerical dissipation model, which includes nonlinear sensors to detect shocks/shears

and other small scale features, and spurious oscillation instability due to under-

resolved grids. Furthermore, we will use the detector to switch off the entropy

splitting at shocks/shears and adjust the entropy splitting parameter with the aid
of the local Mach number and Reynolds number in smooth regions as discussed

earlier. The advanced numerical dissipation model can be used: (Option I) as

part of the scheme, (Option II) as an adaptive filter control after the completion
of a full time step of the numerical integration or (Option III) as a combination

of Options I and II. For example, we can combine high order nonlinear dissi-

pation (with sensor control) using Option I and nonlinear filter (with a different
sensor control) using Option II.

The numerical experiments we have conducted so far concentrate on an

adaptive procedure that can distinguish three major computed flow features to

signal the correct type and amount of numerical dissipation needed in addi-

tion to controlling the entropy splitting parameter. The major flow features

and numerical instability are (a) shocks/shears, (b) turbulent fluctuations, and

(c) spurious high-frequency oscillations. It is important to not damp out the

turbulent fluctuations. The procedure can be extended if additional refinement

or classification of flow types and the required type of numerical dissipation
is needed. There exist different detection mechanisms in the literature for the

above three features. These detectors are not mutually exclusive and/or are

too expensive for practical applications. We believe that the multiresolution

wavelet approach proposed in Sj6green & Yee [63] is capable of detecting all
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of these flow features, resulting in three distinct sensors. If chosen properly,
one multiresolution wavelet basis function might be able to detect all three fea-

tures. For an optimum choice, one might have to use more than one type of

wavelet basis functions but at the expense of an increase in CPU requirements.

Some incremental studies into the use of entropy splitting and the application

of these sensors were illustrated in [83, 63, 64, 66, 65, 50]. The next section

summarizes the development of adaptive filters for a special class of high order
discretizations.

5. High Order Filter Finite Difference Methods

The adaptive numerical dissipation controls discussed in the preceding sec-

tion are scheme independent. This section applies the adaptive ideas to high or-

der central schemes. We first summarize the high order nonlinear filter schemes

that were developed for shock/shear capturing. We then extend these filtering

ideas to include more complex flow structures by blending more than one filter

and sensing tool.

5.1 ACM and Wavelet Filter Schemes for Discontinuity

Capturing

An alternative to linear filter and/or standard shock-capturing schemes for

viscous multiscale and long-time wave propagation computations is the ACM

(artificial compression method) and wavelet filter schemes described in [82,

63]. A high order centered base scheme together with the nonlinear dissipative

portion of a shock-capturing scheme, activated by an ACM or wavelet sensor

is used as the filter. Often an entropy split form of the inviscid flux derivatives

is used. The idea of the ACM filter scheme is to have the spatially higher non-
dissipative scheme activated at all times and to add the full strength, efficient

and accurate numerical dissipation only at the shock layers and steep gradients.

Thus, it is necessary to have good detectors which flag the layers, and not

the oscillatory turbulent parts of the flow field. While minimizing the use

of numerical dissipation away from discontinuities and steep gradients, the

ACM filter scheme consists of tuning parameters that are physical problem

dependent. To minimize the tuning of parameters, new sensors with improved

detection properties were proposed in Sj6green & Yee [63]. The new sensors

are derived from utilizing appropriate non-orthogonal wavelet basis functions,

and they can be used to completely switch off the extra numerical dissipation
outside shock layers. The non-dissipative spatial base scheme of arbitrarily high

order of accuracy can be maintained without compromising its stability at all

parts of the domain where the solution is smooth. The corresponding scheme
is referred to as the wavelet filter scheme. This nonlinear filter approach is

particularly important for multiscale viscous flows. The procedure takes the
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physical viscosity and the reacting terms into consideration since only non-

dissipative high order schemes are used as the base scheme. In other words,

numerical dissipations based on the convection terms are used to filter the

numerical solution at the completion of the full step of the time integration at

regions where the physical viscosity is inadequate to stabilize the high frequency

oscillations due to the non-dissipative nature of the base scheme.

The method applied to the 2-D conservation law where U is the conservative
vector and F and G are the inviscid fluxes,

+ F(U)x + a(U) = O, (5.1)

can be described as taking, e.g., one full time step by a Runge-Kutta method on

the semi discrete system without or with entropy splitting, respectively, by

dUj,k _
dt - -DjF(Uj,k) - DKG(Uj,k),

(5.2)

at -- 1-_[DjF(Uj, k) + DKG(Uj,k)]
(5.3)

1
- I+_[Fw(Uj,k)DjWj,k + Gw(Uj,k)DKWj,k],

where Dj and DK are high order finite difference operators, acting in the j- and

k-direction respectively. They can be the SBP satisfying higher-order difference

operators (e.g., sixth-order central scheme with SBP boundary schemes). We

consider here a rectangular grid with grid spacing Ax and Ay and time step

At. Denote a full Runge-Kutta step by

_f jn+l = RK(U;k). (5.4),k

After the completion of a full Runge-Kutta step, a filter (post processing) step

is applied leading to

ujn+l _"Tn+ 1 _ N
,k -- "_j,k -- /_x(ff'j+l/2,k -- Fj-1/2,k) -- /_y(Cj,k+l/2 -- Gj,k-1/2) (5.5)

with Az = At/Ax and Av = At/Ay. The filter numerical fluxes Fj+I/2, k

and Gj,k+l/2 act in the j- and k- coordinate directions respectively, and are

evaluated on the function _'n+l. For example,

1 (I,*
Fj+l/2,k -- _Rj+I/2 j+l/2 (5.6)

where Rj+I/2 is the fight eigenvector matrix of the Jacobian of the inviscid flux

F evaluated at Roe's average state with the k index suppressed. The lth element
of the filter flux (I)*j+l/2 in the x-direction (olj+l/2) * is a product of a sensor
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CO/ l ,j+1/2 and a nonlinear dissipation ¢j+1/2 1 = 1, 2, 3, 4. With the omission of
the k index, it is of the form

(¢tj+1/2), l t-- Wj+I/2(gj+I/2. (5.7)

l
For the ACM sensor, wj+l/2 is a product of a physical dependent sensor coeffi-

z
cient and a gradient like detector. The nonlinear numerical dissipation q_j+l/2

can be obtained, from the dissipative portion of a TVD, ENO or WENO scheme.

For example, the numerical flux Hj + 1/2,k of a second- or third-order TVD, ENO
or WENO scheme can be written

1 F 1
Hj+l/2,k -- -_( j,k -t- Fj+x,k) + _Rj+I/2(I2j+I/2,

(5.8)

with the first two terms corresponding to the flux average of a centered difference

and (I)j+_/2 with elements ¢}+1/2 being the numerical dissipation portion of
the scheme.

For all the numerical experiments, the numerical dissipation portion of the

Harten-Yee scheme is used. It has the form for the j-direction

(/)_+1/2 1 l l l _l-- (gj+l -t- -- 75.+1/2-- Q(aj+l/2 -4- )O_j+l/2__Q(aj+l/2 ) g_.) l (5.9)

with Q(x) = x/x 2 + e2, the entropy satisfying remedy for the scheme with

entropy correction parameter e (not to be confused with the entropy splitting
parameter), ta j+l� 2 is the lth characteristic speed evaluated at the Roe's average

state in the j-direction. "7J+1/2 is the modified characteristic speed and 9_ is

a slope limiter which is a function of aj+l/2, the jump in the characteristic
variable in the x-direction.

A form of the ACM sensor w_+l/2 proposed in [82] is

cO}+1/2 ---_ max(O}, t0_q_l) (5.10)

where

j ---

l%-_/21

16_l I5lj+ll2[+ j-il2l
(5.11)

See [82, 83] for details. It was shown in [63] that the method can be improved by
l

letting the sensor wj+l/2 be based instead on a regularity estimate obtained from
the wavelet coefficients of the solution. The wavelet analysis gives an estimate

of the so called local Lipschitz exponent a. The dissipation is switched on for

low a values, and switched offwhen c_becomes large [63]. The wavelet analysis

is more general and can be used to detect other features besides shocks/shears.

The following gives a more detailed explanation.
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5.2 Wavelet Sensor for Multiscale Flow Physics

Wavelets were originally developed for feature extraction in image process-

ing and for data compression. It is well known that the regularity of a function
can be determined from its wavelet coefficients [13, 46, 41] far better than from

its Fourier coefficients. By computing wavelet coefficients (with a suitable set

of wavelet basis functions), we obtain very precise information about the regu-

larity of the function in question. This information is obtained just by analyzing

a given grid function. No information about the particular problem which is

solved is used. Thus, wavelet detectors are general, problem independent, and
rest on a solid mathematical foundation.

As of the 1990's, wavelets have been a new class of basis functions that

are finding use in analyzing and interpreting turbulence data from experiments.
They also are used for analyzing the structure of turbulence from numerical data

obtained from DNS or LES. See Farge [15] and Perrier et al. [57]. There are

several ways to introduce wavelets. One standard way is through the continuous

wavelet transform and another is through multiresolution analysis, hereafter, re-

ferred to as wavelet based multiresolution analysis. Mallet and collaborators

[41, 42, 43, 44, 45, 46] established important wavelet theory through multires-

olution analysis. See references [72, 71] for an introduction to the concept of
multiresolution analysis. Recently, wavelet based multiresolution analysis has

been used for grid adaptation (Gerritsen & Olsson [20]), and to replace existing

basis functions in constructing more accurate finite element methods. Here we

utilize wavelet based multiresolution analysis to adaptively control the amount

of numerical dissipation.

The wavelet sensor estimates the Lipschitz exponent of a grid function fj
(e.g., the density and pressure). The Lipschitz exponent at a point x is defined
as the largest c_ satisfying

sup If(m + h) - f(x)l _< C, (5.12)
he0 hC_

and this gives information about the regularity of the function f, where small

c_ means poor regularity. For a C 1 wavelet function ¢ with compact support,
o_can be estimated from the wavelet coefficients, defined as

wm,j =< f, Cm,j >= I f(x)¢m,j(x)dx, (5.13)
J

where
/ _z-j

Cm,j : 2m_b__) (5.14)

is the wavelet function _)m,j on scale m located at the point j in space. This

definition gives a so called redundant wavelet, which gives (under a few tech-

nical assumptions on ¢) a non-orthogonal basis for L 2. Theorem 9.2.2 in [13]
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statesthatif _ isC 1 and has compact support, and if the wavelet coefficients

maxj IWm,j] in a neighborhood of j0 decay as 2mc_ as the scale is refined, then

the grid function fj has Lipschitz exponent o_at j0. In practical computations,

we have a smallest scale determined by the grid size. We evaluate Wm,j on this
scale, m0, and a few coarser scales, m0 + 1, m0 + 2, and estimate the Lipschitz

exponent at the point j0 by a least square fit to the line [63]

max logs Iwm,j = mc_ + c. (5.15)
j near jo

Proper selection of the wavelet ¢ is very important for an accurate detection

of the flow features. The result in [46, 45], which is used in [20], gives the
condition that ¢(x) should be the kth-derivative of a smooth function rl(Z)

with the property

r/(x) >0, /rl(x)dx= 1, z_+_limr/(k)(x):0. (5.16)

Then the result is valid for 0 < o_ < k. A continuous function f(x) has a

Lipschitz exponent c_ > 0. A bounded discontinuity (shock) has oz = 0, and a

Dirac function (local oscillation) has c_ = -1. Large values of k can be used in

turbulent flow so that large vortices or vortex sheets can be detected. Although

the theorem above does not hold for o_negative, a useful upper bound on o_can
be obtained from the wavelet coefficient estimate.

For the numerical experiments, the wavelet coefficient Wm,j is computed

numerically by a recursive procedure, which is a second-order B-spline wavelet
or a modification of Harten's multi-resolution scheme [63]. We can express the

algorithm as follows. Introduce the grid operators

A f j = _-,qk=-p dkf j+k

Dfj q= Y]k=-p ckfj+k

and its ruth level expanded versions

(5.17)

Amfj

Dmfj

= __q dkfj+2mkk=-p

= _qk= ckfj+2mk,-p

(5.18)

where the integers p and q and the coefficients Ck and dk are related to the

chosen ¢(x) and ¢(x), and can be determined from them. Here ¢(x) is the so

called scaling function of the multiresolution wavelets.
The ruth level of wavelet coefficients can be written as

wm,j = (f,¢m,j)= Dm-lAm-2Am-3...Aofj, m = 1,2, .... (5.19)
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Once the coefficients dk and ck are determined, the computation is a very

standard application of grid operators. In practice, we only use m0 - 3 to 5.

To be able to compute up to the boundary, we use one sided versions of the

given operators. This seems to work well in practice, although it is not covered

by the wavelet framework described above.

Detectors from the B-Spline Wavelet Basis Function. Developing the

best suited wavelets that can characterize all of the flow features might involve

the switching or blending of more than one mother wavelet ¢(x) and scaling

function ¢(x), especially if one needs to distinguish turbulent fluctuations from

shock/shear and/or spurious high frequency oscillations. The mother wavelet

function used in [20] and described in detail in [46] meets some of our require-

ments. It is obtained from second order B-splines.

'_,(x) =

0 x>l

-2(x-1) 2 1/2<x< 1

-4x(1 - x) + 2x 2 0 < x < 1/2

-4x(l+x)-2x 2 -1/2<x<0

2(x + 1) 2 -1 < x < -1/2
0 x< -1

For this wavelet (5.20), there exists a scaling function, given by

+ a/4

¢(x)= i((x+

x>2

l<x<2

O<x<l

-l<x<O

x<-i

(5.20)

(5.21)

The normalization is such that the integral of the scaling function above is

equal to one. The functions above are standard, and can be found in [13]. The

scaling function differs by a shift from the scaling function used in [20], but the

important relations

¢(x) = ¼¢(2x+l)+3¢(2x)+3¢(2x-1)+¼¢(2x-2)

¢(x) =¢(2x+l)-¢(2x)

hold, and give the grid operators

(5.22)

= (fj-1 + 3fj + 3fj+l + fj+2)/8,

= (fj-l-- fj)/2 j= 2,...,N.

j=2,...,N-2
(5.23)

Note that this wavelet stencil is not symmetric. In general, the wavelet

coefficients involve points from p2 m°-I to -q2 m°- 1, giving a stencil of totally

(p + q)2 m°-I + 1 points.
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Detectors from the Redundant Form of Harten Multiresolution Wavelet.

For the redundant form of Harten multiresolution wavelet there is more than

one choice for the interpolation function. See Sj6green [62] for a discussion.

The exact form of the method for the computations in this article is

Afj

Dfj

= (fj-l + fj+l)/2 j= 2,...,N-1

=fj-Afj j = 2,... ,N -1.
(5.24)

The above choice was made in order to have a simple and efficient method. The

stencil is narrower than for the B-spline formulas that were given previously.

With the formula above we also get a symmetric stencil, which is more natural if

the other parts of the computation, such as difference approximations of PDEs

are done by symmetric formulas. Furthermore, symmetry makes periodic BCs
somewhat easier to implement. Note that the absence of symmetry for either

the scaling function or the wavelet can lead to phase distortion. This can be

shown to be important in signal processing applications.

Multi-Dimensional Wavelets. The computation of multi-dimensional wavelets

is quite expensive, especially in 3-D. A simple minded efficient way is to eval-

uate the wavelet coefficients dimension-by-dimension. This means that we get

two set of wavelet coefficients w_,j(y) and wVm,k(x), where now (j,k) is the
position and m is the scale. The precise definition is

wX,j(y) = f f(x,y)¢m,j(x)dx

Y (x) -- ff(x,y)_Pm,k(y)dy.Wrn,k

(5.25)

Thus, the dimension-by-dimension approach involved only terms evaluated
as finite differences in the x-direction and terms which are evaluated in the y-

direction. We then use the wX,j (y) coefficients for the x-direction computation,
and the y-coefficients for the y-direction computation.

Shock/Shear Wavelet Sensor. For the numerical experiments presented in

the next section the wavelet sensor is obtained by computing a vector of the

approximated Lipschitz exponent of a chosen vector function to be sensed
with a suitable multiresolution non-orthogonal wavelet basis function. Here,

"vectors or variables to be sensed" means the represented vectors or variables

that are suitable for the extraction of the desired flow physics. The variables

to be sensed can be the density, the combination of density and pressure, the
characteristic variables, the jumps in the characteristic variables _t ,j+1/2 or the
entropy variable vector W ([20, 83]).
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For example, if the characteristic variables are the chosen vector to be sensed
l

by the wavelet approach, the sensor $_+1/2 can be defined as

l
,9}+1/2 = T(O_j+l/2) , (5.26)

where l
c_j+l/2 is the estimated Lipschitz exponent of the/th characteristic com-

ponent with l = 1, 2, 3, 4, the four characteristic waves. 7(c_) is a sensing

function which decreases from T(0) = 1 to 7(1) = 0 (for the aforementioned

type of wavelets). Note that the/th component of the estimated Lipschitz expo-
nent o_tj+1/2 is not to be confused with the jump in the/th characteristic variables

L
_+1/2 in Section 5.1. We use $_+1/2 as the sensor to distinguish it from the

ACM sensor J
j+1/2 in Section 5.1. Noted that the k index is omitted (for the

2-D case) for simplicity.

If we instead base the exponent estimate on point centered quantities, we

will use the sensor function

SJ+I/2 = m&X(T(O_}), T(Ol_+l) ). (5.27)

If the exponent estimate is based on other quantities than the characteristic

variables, (e.g., density and pressure), we use the switch

l
Sj+I/2 = max Sj.+I/2 , (5.28)

l

where the maximum is taken over all components of the waves used in the

estimate. In this case, the switch is the same for all characteristic fields.

The function r(c_) should be such that r(0) = 1, and 7(1) = 0. Three

options considered are

1 c_ < oz0_-(cd= 0 __>o_o

1 1 arctan K(c_0 - c_) (5.29)_(_) = _ +

T(C_) = max{0, min[1, (c_- 1)/(c_0 -- 1)]}.

Here, o_0 is a cut off exponent to be chosen. For the arctan function the values

0 and 1 are not attained, but we take the constant K large enough so that the

function is close to zero for c_ > 1, and close to one for c_ < 0. We have

tried values for K in the interval [200,500]. Alternatively, one can integrate

the actual c_ value into the sensor function instead of using the same amount of

numerical dissipation at the cut off exponent.

After some experimentation we have found that switching on the dissipation

at the grid points where c_ < 0.5 works well, i.e.,

1 a<0.5
r(c_) = (5.30)

0 _>0.5
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In fact the method does not seem to be very sensitive to the exact value of cut

off o_0, (for 0.4 _< o_0 _< 0.6) for all the test cases considered. Furthermore, the

same cut off value, 0.5, works well for all problems we have tried in Section 6

(except for the vortex convection case, where c_0 = 0.0 is used in conjunction

with entropy splitting [83]). Experiments with smoothed step functions do not

give very different results.

5.3 Test Example of the Shock/Shear Wavelet Detectors

This section shows the performance of the wavelet sensor using the dimension-

by-dimension approach for a 2-D complex flow structure. It is important to note
that the illustration involves only the feature extraction capability of the wavelet

sensor on a given grid function. No dynamic behavior was involved (i.e., the
numerical scheme is not part of the analysis). Figure 5.1 shows the computed

density and pressure contours from a precomputed numerical simulation at
t = 120 with At = 0.12 to be used as the two-dimensional discrete functions

to be analyzed by the wavelet algorithm. The discrete functions represent a

numerical data of a shock from the upper left corner, impinging on a horizontal

shear layer in the middle of the domain. The shock is reflected from the lower

wall boundary. For more details about the problem, see Yee et al. [82, 83].

Density

X

Pressure

----_ _ o 0 _

10
>, 0

-10

-200-- 50 1O0 150 200
X

Fig. 5.1. 2-D Testing discrete function, (density and pressure contours at

t = 120).
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Figure 5.2 shows contours of the estimated Lipschitz exponent o_for the function

in Fig. 5.1. The value o_ was computed here from three levels (m0 = 3) of the

wavelet algorithm, using the wavelet coefficient

V/ x y 2Wm,j,k = (Wm,j,k) 2 + (Wm,j,k) , (5.31)

where the one dimensional coefficients were computed by the multiresolution

operators (5.24) in each coordinate direction. The coefficients were computed

for the pressure. The top figure in Fig. 5.2 shows c_ contours on levels from

0.5 to 0.9. The lower figure shows the corresponding sensor, a function which

is one for c_ < 0.5 and zero otherwise. The wavelet sensor clearly captures

the shock and the shear layer. The low c_ at the upper boundary to the right is

probably due to mildly unstable BCs at the upper boundary.

10

>, 0

-10

-20

Alpha contours [0.5 0.9]

5O 100 150 200
X

10

>, 0

-10

Sensor, contour at 0.5

Jr-_2._,c= ,=_ _ ,=_---'--,_.-_,=_? _ " ....-...----j_r./_ (_j

50 100 150
X

Fig. 5.2. Top." c_ contours 0.5 _< c_ _< 0.9; Bottom: sensor contour at

o_ = 0.5. by the RH-wavelet.

5.4 Blending of Different Filters

The nonlinear filters for the ACM or wavelet shock/shear capturing nonlinear

filter might not be sufficient for (a) time-marching to steady state and (b) spuri-

ous high frequency oscillations due to insufficient grid resolution and nonlinear
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instability away from discontinuities, especially for turbulent and large-eddy

simulations. This Section discusses the blending of other filters with these
shock/shear filters.

In classical CFD codes, a second order accurate base method is used together

with two constant strength linear numerical dissipation terms. One linear fourth-

order dissipation is used everywhere except near shocks/shears/steep-gradients
to remove nonlinear instabilities. It does not affect the second order accu-

racy of the base scheme. The second dissipation term is a second-order linear

dissipation, which affects the order of accuracy, but is only switched on near

discontinuities, and/or steep unresolved gradients using a gradient sensor. The

sensor used cannot distinguish the different flow features distinctly and is not

accurate enough for turbulent statistics and long-time acoustic computations,
unless extreme grid refinement is employed.

In analogy with the aforementioned classical methods, a more advanced

numerical dissipation model with improved flow feature extraction sensors for

high order central schemes is proposed. Here, we consider a dissipation model

with two parts. One part is a nonlinear filter ([82]) and the second part is a

high order linear numerical dissipation term modified at boundaries to become

a semi-bounded operator, see [67, 65]. The wavelet dissipation control sensor

developed in [63] is used as the flow feature detector.

Time-Marching to Steady State. For time-marching to steady state one

usually needs to add fourth-order linear dissipation to a second-order spatial

differencing scheme (Beam and Warming (1976)). For the present schemes us-

ing characteristic filters, in addition to the nonlinear shock/shear filter, one might
need to add a sixth-order linear dissipation to a fourth-order spatial base scheme

and an eighth-order linear dissipation to a sixth-order spatial base scheme in
regions away from shocks for stability and convergence. Let La be such an
additional filter operator. The two ways of incorporating the La operator are

options I and II discussed in Section 4.

To minimize the amount of dissipation due to Ld in the vicinity of shock

waves, there should be a switching mechanism na to turn off the Ld operator in

the vicinity of shock waves. The Ld operator can be applied to the conservative,

primitive or characteristic variables. The simplest form is to apply Ld to the

conservative variables. Alternatively, since all of the work in computing the

average states and the characteristic variables is done for the shock-capturing

filter operator, one can apply the La operator to the characteristic variables.

In this case, the switching mechanism kd can be a vector so that it is more in

tune with the nonlinear shock detector using the approximate Riemann solver.

For example, one can set n = 0 for the linearly degenerate fields and blend a

small amount of _d to remove spurious noise generated by the lack of nonlinear
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filters. This blending of the nonlinear shock/shear filter with the La operator

can be applied to time-accurate computations as well.

Suppression of Spurious High Frequency Oscillations. The nonlinear

shock/shear filters might not be able to remove spurious high frequency oscilla-

tions effectively unless sufficient fine grid points are used. For the suppression

of unphysical high frequency oscillations due to insufficient grid resolution

and nonlinear instability away from discontinuities, higher-order spectral-like

filters (Vichnevetsky (1974), Lele (1994), Alpert (1981), Visbal and Gaitonde

(1998), Gaitonde and Visbal (1999)) might be needed at the locations where
the value of the shock/shear sensor is very small or zero. If spectral-like filters

are needed, a proper blending of nonlinear shock/shear filters with spectral-like

filters should be applied. In this case, we can use the same procedures as the

time-marching to the steady state except the La operator should be replaced

with the spectral-like filters (for compact central schemes).

An Adaptive Numerical Dissipation Model for Shock-Turbulence Inter-

actions. Assume a sufficient grid is used for the problem and scheme in

question, and that the scale of turbulent fluctuations is larger than the spuri-

ous high-frequency oscillations. Below we present a filter model under these

assumptions. If the scale of the turbulent fluctuation is in similar scale as the

high-frequency oscillations, a different wavelet with a turbulent fluctuation sen-

sor should be added. For example, for a sixth-order central spatial base scheme,
we define the 1-D filter numerical flux of the numerical dissipation operator as

H_-1/2.

Hd l/2 -- F* --- Sj--1/2 j--l�2 -t-dj[1 Sj_I/2](h6D_(D+D_)aUj, (5.32)

here @-1/2 is a switch computed as described in Section 5.2.4, and F]_I/2 is
the flux function corresponding to the dissipative portion of a shock-capturing

scheme (e.g., second order accurate TVD scheme) [82]. The first part of the filter
stabilizes the scheme at shock/shear locations. The second part is an eighth-

order linear filter which improves nonlinear stability away from shock/shear

locations. Analogous eighth-order filters can be used if a sixth-order compact

spatial base scheme is used [18, 76]. We switch on the high order part of the
filter when we switch off the nonlinear filter. The physical quantity (e.g., local

Mach number) can be used to determine the dj parameter of this high order

dissipation term.
To further increase stability properties, it is possible to use the sensor to switch

on and off the entropy splitting and adjust the value of the entropy splitting

parameter according to flow type and region. For the 1-D shock/turbulence

interactions to be presented in the next section, however, we believe a constant
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/3 = 1 away from the shock waves is sufficient. After the completion of a full

timestep computation using the sixth-order base scheme (denoting the solution

by Uj), we filter this solution by

At
u; +1= vj + HJ_I/ 1 (5.33)

Here the filter numerical fluxes HS+I/2 are evaluated at U.

5.5 Spurious Numerical Solutions and Instability Due to
Under-Resolved Grids

There has been much discussion on verification and validation processes for

establishing the credibility of CFD simulations [68, 7, 75, 21, 52]. Since the

early 1990s, many of the aeronautical and mechanical engineering related ref-

erence journals mandated that any accepted articles in numerical simulations

(without known solutions to compare with) need to perform a minimum of one

level of grid refinement and time step reduction. On the other hand, it has

become common to regard high order schemes as more accurate, reliable and

requiring less grid points. The danger comes when one tries to perform com-

putations with the coarsest grid possible while still hoping to maintain numeri-
cal results sufficiently accurate for complex flows and, especially, data-limited

problems. On one hand, high order methods when applied to highly coupled
multidimensional complex nonlinear problems might have different stability,

convergence and reliability behavior than their well studied low order counter-
parts, especially for nonlinear schemes such as TVD, MUSCL with limiters,

ENO, WENO, and spectral elements and discrete Galerkin. See for example

references [23, 74, 6, 49, 78, 81, 80, 79]. On the other hand, high order meth-

ods involve higher operation counts per grid and systematic grid convergence

studies can be time consuming and prohibitively expensive. At the same time it

is difficult to fully understand or categorize the different nonlinear behavior of

finite discretizations, especially at the limits of under-resolution when different

types of numerical (spurious) bifurcation phenomena might occur, depending

on the combination of grid spacings, time steps, initial conditions (ICs) and

numerical treatments of BCs as well as the nonlinear stability of the scheme in

question.
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(256, 16) c_ = 0.0, t= 1.0

(b)

33

(256, 16) c_ = 0.3, t = 1.5

(c)
(256, 8) c_ = 1.0, t = 1.5

(_)
(256, 8) c_=0.3, t=1.5

(e)
1024, 8) c_ = 0.05, t = 1.2

(f)
(256, 16) a=0.05, t= 1.2

/
Fig. 5.3. Spectral element solutions of doubly periodic shear layer roll-up

problem with different (E, N) pairings and filter strengths c_: (a-d) thick shear

layer case (p = 30), (e-f) thin shear layer case (p = 100).
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Due to the difficulty in analysis, the effect of under-resolved grids and the

nonlinear behavior of available spatial discretizations are scarcely discussed
in the literature. Here, an under-resolved numerical simulation, according to

Brown & Minion, is one where the grid spacing being used is too coarse to re-

solve the smallest physically relevant scales of the chosen continuum governing

equations that are of interest to the numerical modeler. Before the nineties, it

was common in DNS to avoid the use of numerical dissipations. It was standard

practice to refine the grid not just to resolve the multiscale physics but also to
overcome nonlinear instability instead of employing numerical dissipation or

filters. In certain cases, the grid is finer than what is needed to resolve the

smallest scale. This section illustrates the situation where the necessity of finer

grid can be overcome by the use of an appropriate filter and still be able to

obtain an accurate and stable solution with a much coarser grid.

Brown and Minion [6, 49] studied the effects of under-resolved grids by

considering the shear layer roll-up problem that arises when the Navier-Stokes

equations are solved in the unit square with doubly-periodic BCs with ICs given

by

tanh(p(y- 0.25)) for y < 0.5u = tanh(p(0.75 - y)) for y > 0.5 ' (5.34)

v = 0.05 sin(27rx). (5.35)

In [6, 49], the behavior of several difference methods was considered. These

difference methods include a Godunov projection method, a primitive variable

ENO method, an upwind vorticity stream-function method, centered difference

methods of both a pressure-Poisson and vorticity stream-function formulation,

and a pseudospectral method. They demonstrated that all these methods pro-

duce spurious, non-physical vortices. While these extra vortices might appear
to be physically reasonable, they disappear when the mesh is refined.

Figure 5.3 shows filter-based spectral element results for the problem (5.34)

as computed by Fischer and Mullen [17]. The spectral element method is char-
acterized by the discretization pair (E, N), where E is the number of quadri-

lateral elements and N is the order of the tensor-product polynomial expansion

within each element. This filter presented in [17] is designed to stabilize the

PN2 spectral element method at high Reynolds numbers. The PN2 method,
introduced by Maday and Patera [40], is a consistent approximation to the Stokes

problem which employs continuous velocity expansions of order N and discon-

tinuous pressure expansions of order N - 2. The discretizations in Fig. 5.3a -

5.3e consist of a 16 array of elements, while Fig. 5.3fconsists of a 32 × 32 array.

Here, a denotes the spectral filter coefficient (not to confused with the Lipschitz

exponent or the jump in the characteristics in Sections 5.1 and 5.2), with c_ = 0

corresponding to no filtering. The time step size is At -- 0.002 in all cases,

corresponding to CFL numbers in the range of 1 to 5. Without filtering, Fischer
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and Mullen were not able to simulate this problem at any reasonable resolution.

Figure 5.3a illustrates the result prior to blow up for the unfiltered case with

(E, N) = (162, 16), which has a resolution corresponding to an n x n grid with

n = 256. Unfiltered results for N = 8 (n = 128) and N = 32 (n = 512) are

similar. Filtering with o_ - 0.3 yields dramatic improvement for n = 256 (Fig.

5.3b) and n = 128 (Fig. 5.3d). Though the so-called full projection with filter

strength o_ = 1 is stable, the partial filtering of (o_ < 1) gives smoother results

and is preferable. The cases in 5.3e and 5.3f correspond to the difficult "thin"

shear layer case of [6] and show the benefits of high-order discretizations. Both

cases correspond to a resolution of n 2 = 2562. In Fig. 5.3e, this is attained

with (E, N) = (162, 16), while in Fig 5.3f, (E, N) -- (322, 8). Although both

results are stable (due to the filter), Fig 5.3f reveals the presence of spurious

vortices that are absent in the higher-order case.

6. Numerical Examples

This section illustrates the power of entropy splitting, the difference in per-

formance of linear and nonlinear (with sensor controls) filters and the combi-

nation of both types of filters with adaptive sensor controls. We use the same

notation as in [82, 83, 64]. The artificial compression method (ACM) and

wavelet filter schemes using a second-order nonlinear filter with sixth-order

spatial central interior scheme for both the inviscid and viscous flux derivatives

are denoted by ACM66 and WAV66. See [82, 83, 64] for the forms of these
filter schemes. The same scheme without filters is denoted by CEN66. The

scheme using the fifth-order WENO for the inviscid flux derivatives and sixth-
order central for viscous flux derivatives is denoted by WENO5. Computations

using the standard fourth-order Runge-Kutta temporal discretization are indi-

cated by appending the letters "RK4" as in CEN66-RK4. ACM66 and WAV66
use the Roe's average state and the van Leer limiter for the nonlinear numer-

ical dissipation portion of the filter. The wavelet decomposition is applied in

density and pressure, and the maximum wavelet coefficient of the two com-

ponents is used. The nonlinear numerical dissipation is switched on wherever
the wavelet analysis gives a Lipschitz exponent [63] less than 0.5. Increasing

this number will reduce oscillations, at the price of reduced accuracy (see [63]

for other possibilities). Computations using entropy splitting are indicated by

appending the letters "ENT" as in WAV66-RK4-ENT. Computations using an
eighth-order linear dissipation filter are indicated by appending the letters "D8"
as in WAV66-RK4-D8. In order not to introduce additional notation, inviscid

flow simulations are designated by the same notation, with the viscous terms
not activated.



36

IsentropicVortexEvolution
(Horizontally Convecting Vortex, vortex strength/9=5)

Freestream:

(uoo, voo) = (1,0); poo = poo = 1

IC: Perturbationsare addedto thefreestream(not inentropy)

I--I' 3
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6T = ('7- 1)/Y'e,_,.,
8,7_-=

r2=(x-x/+ (y-y�
ComputationalDomain& GridSize:
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80 x 79 Uniformgrid

Periodic BC in z & y

InlUalVortex,DensityContours

(z** _Ypo)
center of vortex

Figure 6.1. Vortex convection problem description.

6.1 A 2-D Vortex Convection Model [82, 83, 63, 65]

The onset of nonlinear instability of long-time numerical integration, the

benefit of the entropy splitting and the difference in performance of linear and
nonlinear numerical dissipations in improving nonlinear stability for a horizon-

tally convecting vortex (see Fig. 6.1) can be found in in [82, 83, 63, 65]. We
summarize the results here.

To show the onset of nonlinear instability, the 2-D perfect gas compressible

Euler equations are approximated by CEN66-RK4 with periodic BCs imposed

using a 80 x 79 grid with the time step At = 0.01. Since this is a pure

convection problem, the vortex should convect without any distortion if the
numerical scheme is highly accurate and non-dissipative. Although CEN66-

RK4 is linearly stable, the test problem is nonlinear and instability eventually

sets in. Almost perfect vortex preservation is observed for up to 5 periods of

integrations (5 times after the vortex has convected back to the same position -
time = 50). Beyond 5 periods the solution becomes oscillatory, and blows up

before the completion of 6 periods. The blow up is associated with an increase

in entropy [65]. If we instead use the entropy-split form of the approximation

(CEN66-RK4-ENT) with a split parameter/3 -- 1, almost perfect vortex preser-

vation for up to 40 periods can be obtained. The computation remains stable for

up to 67 periods before it breaks down. The time history of the L 2 entropy norm
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Figure 6.2. Entropy normhistory of CEN66-ENT:entropy split parameter/3 = 1 and 80 x 79
grid.

and density contours of the IC and the computed solution after 5, 10, 30, 50 and

67 periods using CEN66-RK4-ENT is shown in Figs. 6.2 and 6.3. The norm

is decreasing, although the instabilities break down the solution after 67 peri-

ods. Using the second-order nonlinear filter without splitting (ACM66-RK4
or WAV66-RK4), the solution remains stable beyond 67 periods. However,

the numerical solution gradually starts to diffuse after 20 periods. If we use

the nonlinear filter in conjunction with entropy splitting (ACM66-RK4-ENT or

WAV66-RK4-ENT), almost perfect vortex preservation can be obtained for up

to 120 periods using a split parameter/3 = 1 [83].
The density contours of the solution after 5, 10, 200 and 300 periods for

the un-split (/3 -- oo) computation using the eighth-order linear dissipation

(CEN66-RK4-D8) are shown in Fig. 6.4. The linear dissipation (-dh 7 (D+ D_)4 Uj)

with grid spacing h was added to the sixth-order base scheme to discretize the

convection terms. The parameter d is a given constant (d = 0.002) and is

scaled with the spectral radius of the Jacobian of the flux function, and D+
and D_ are the forward and backward difference operators, respectively. This

numerical dissipation is applied as part of the scheme and not as a post pro-

cessing filter. The computation can be run for 300 periods without breakdown.

However, serious degradation of accuracy occurs after 250 periods. For this

particular problem, the CEN66-RK4-D8 out performed the ACM66-RK4-ENT

and WAV66-RK4-ENT using fl -- 1. Perhaps using a higher than third-order

nonlinear filter might improve the performance of the ACM66-RK4-ENT and

WAV66-RK4-ENT at the expense of an increase in CPU.
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6.2 DNS of 3-D Compressible Turbulent Channel Flow

[611

This numerical example illustrates the power of entropy splitting for DNS

computations. To obtain accurate turbulent statistics, very long-time integration

and highly accurate methods are required for this DNS computation. The com-

putation employed the SBP-satisfying boundary difference operator [9] with
the fourth-order central interior scheme applied to the split form of the inviscid
flux derivatives CEN44-RK4-ENT with p --- 4, and a Laplacian viscous formu-

lation. The fluid mechanics of this 3-D wall bounded isothermal compressible

turbulent channel flow has been studied in some detail by Coleman et al. [11].

They showed that the only compressibility effect at moderate Mach numbers
comes from the variation of fluid properties with temperature. They used a uni-

form body force term to drive the flow, but recommended the constant pressure

gradient approach which was adapted by Sandham et al. [61].

Grid refinement study. A simplified case is taken in which the fluid proper-

ties (viscosity and thermal conductivity) are held constant and the computational

box size is kept small. The latter is justified as a method of reducing cost as the

gross turbulence statistics are relatively insensitive to the computation box size,

so long as the domains are still significantly larger than the minimal domains on
which turbulence can be sustained. A Mach number of 0.1 is chosen, based on

friction velocity and sound speed corresponding to the fixed wall temperature.



Adaptive Low-Dissipative Schemes 41

12"41"12 _t'_

\,_ ....... 24"81 *24
• -- 36"121"36 ._

J

5 -:6

4 - 5

3 4

2 -3_

g
0 1_>_ 2

-1- 0
- -0.5 0 0.5 1

Y

Figure 6.6. Effect of grid refinement on normal stresses. The top curves relate to the left scale,
the middle to the right scale and the lowest to the furthest right scale.

Channel half width h, friction velocity u_-, wall temperature and bulk (inte-

grated) density are the normalizing quantities for non-dimensionalization with

a Reynolds number of 180. Together with the constant property assumption,
this choice of Mach number means that results can reasonably be compared

to results from previous incompressible flow calculations. The computations

were carried out at a fixed CFL=2.0. They were started with artificial ICs and

first run to time t - 50, by which time dependence on the ICs is lost. Statistics

were accumulated over the time interval t = 200 to t -- 300.

Three grids 12 × 41 × 12, 24 x 81 x 24 and 36 x 121 × 36 were considered.

The largest number in each case corresponds to the direction normal to the wall

(y). The computational box has non-dimensional length 3 in the (streamwise) x-

direction, 1.5 in the (spanwise) z-direction and 2 in the y-direction. The x- and

z-directions have periodic BCs with uniform grid spacing. In the y-direction,

the grid is stretched according to

y tanh(cvr/)

h tanh %

with 77uniformly distributed on [-1,1], c_ = 1.7. The ratio of grid points in

each direction was chosen so that all directions have roughly the same degree

of resolution of the relevant turbulence microscales in each direction. Figure

6.5 shows the mean flow velocity, Fig. 6.6 the root mean normal stresses and

Fig. 6.7 the stress profiles across the channel. Angle brackets () denote averages
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Figure 6. 7. Effect of grid refinement on turbulent shear stress (curve falling to zero at the

walls). The total stress (straight lines, non-zero at walls) is also shown.

over the homogeneous spatial directions and time while in the usual notation

double primes denote deviations from mass-weighted (Favre) averages. The
convergence is not uniform across the channel but the change from medium to

fine grid is smaller than the change from coarse to medium grid. A comparison
of the rms quantities with an incompressible flow simulation on the same size

computational box (Z. Hu, private communication) is shown in Fig. 6.8. Here

we compare the 36 x 121 x 36 fourth-order compressible simulation with a
32 × 81 × 32 fully spectral incompressible simulation using the method described

in [59]. As expected, good agreement is found, as expected for this Mach

number (0.1 based on friction velocity or 1.8 based on centerline velocity).

The convergence of various global measures can be found in Table 1 of [61]

for the three grids. For the pressure gradient and Reynolds number specified, the

velocity gradient at the wall should be 180, the difference away from this being

an error of the simulation. Here Re_. is the Reynolds number based on u_-, the

mean density at the wall (Pw) and the mean viscosity (#w) at the wall. For the

finest grid the resolution in wall units (a common check on resolution in DNS)

is A+ = 15 and A + = 7.5 and approximately 10 points are in the sublayer

y+ < 10. The simulations demonstrate a robustness down to very coarse

resolutions, comparable with the best incompressible turbulent flow solvers

incorporating de-aliasing and skew-symmetric formulation of the convective

terms. Without the use of the entropy splitting of the inviscid flux derivatives

and without the use of the Laplacian viscous formulation, the CEN44-RK4
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Figure 6.9. Mean velocity profile, comparing current simulation (dashed line) with Coleman
et al. [1 ll(solid line).

(un-split) solutions for the same CFL number, diverge for all three grids before

meaningful turbulence statistics can be obtained.
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scale and the lowest to the furthest right scale.

Comparison with Coleman et al.. Coleman et al. [11] carried out compa-

rable simulations in their study of the effects of Mach number on turbulence
statistics. This section shows the simulation of their case Re_- = 190 and

M_- = 0.095 with a uniform body force term together with variable fluid prop-

erties (power-law temperature dependence of the viscosity with exponent 0.7

and fixed Prandtl number Pr = 0.7). With the variable viscosity there is a need
to use a larger computational box size than was used in the preceding section,

since turbulence structures become larger as the viscosity is reduced (the wall is
cold relative to the bulk flow). We chose to use a box of size 6 x 2 x 3, i.e., twice

as large in x and z as in the preceding section. This size is still somewhat lower
than that of Coleman et al., who used a box of size 47r x 2 x 47r/3. A computa-

tional grid of 60 × 141 × 60 was used, giving Az + = 19 and Az + = 9.5. These

are comparable to those used by Coleman et al. (16.6 and 10.0 respectively).

There were 12 points in the sublayer (fl+ < 10).

For this simulation a parallel implementation was used, which illustrated the

excellent parallel scaling of the method on a Cray T3E-1200E computer (90%

efficiency for a 2403 benchmark on 256 processors and continued good scaling

up to 768 processors, as reported in Ashworth et al. [3]). The simulation

presented here used 32 processing elements.
Table 1 shows a summary of the output from the simulation. Data from

Coleman et al. have been re-normalized for comparison with the current simu-
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Figure 6.11. Turbulent and total shear stresses, comparing current simulation (dashed line)
with Coleman et al.[1 l](solid line).

dtt

Table 1. Comparison ofcenterline velocity Uc, bulk velocity Ub, wall shear stress (/__7-ffu)wand
shape factor H with Coleman et al.[11]

Simulation Uc Ub (#_'u)w H

Current 18.9 16.3 190.3 1.66

Coleman et al. 18.5 15.9 189.5 1.65

lation results. Figures 6.10 and 6.11 show the shear stress and rms turbulence

fluctuations, while Fig. 6.9 shows the mean velocity profile. Overall a good

agreement is obtained illustrating the good performance of the method for a

resolution comparable to that of a spectral method. Good turbulence kinetic

energy budgets have also been obtained [38].

We note that for this well-studied problem with accurate turbulent flow

databases for comparison, we can safely conclude that entropy splitting in con-

junction with the Laplacian formulation calculations was able to obtain stable

and fairly accurate solutions using coarse to moderate grid sizes without added

numerical dissipation or filters. Unlike the spectral method, this high order

method can be efficiently extended to general geometries [77]. For the same

3-D problem, the finite difference formulation of the WENO5 is more than six
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times as expensive, yet more diffusive than the present scheme using the same

temporal discretization.

The numerical methods are currently being applied to several practical prob-

lems. Alam & Sandham [1] have studied shock-free transition to turbulence

near the leading edge of an aerofoil, while Lawal & Sandham [35] have used

the above method in conjunction with the high order nonlinear filter scheme

from Yee et al. [82] to study transitional shock boundary layer interaction in

flow over a bump. These practical applications have been run without the need

for changes to the numerical method and hence are leading to some confidence

that the developments presented here are generally applicable for DNS of com-

pressible turbulent flow.

For the performance of ACM66-RK4, WAV66-RK4 and WENO5-RK4 on a

spatially or a time-developing mixing layer problem containing shock waves,

see [83, 63].

6.3 Computational Aeroacoustics Applications (CAA)

[50]

This numerical example illustrates the applicability of the entropy splitting

to CAA for low Mach number flows. The numerical prediction of vortex sound

has been an important goal in CAA since the noise in turbulent flow is generated

by vortices. To verify our numerical approach for CAA, the Kirchhoff vortex

is chosen for the numerical test. The Kirchhoff vortex is an elliptical patch of

constant vorticity rotating with constant angular frequency in irrotational flow.

The acoustic pressure generated by the Kirchhoff vortex is governed by the

2D Helmholtz equation, which can be solved analytically for almost circular

Kirchhoff vortices using separation of variables. See [50] and references cited
therein for details. The difficulty with this test case is the large gradient of the

acoustic pressure adjacent to the Kirchhoff vortex.

The perturbation form of the entropy split 2D Euler equations in conjunction
with a fourth-order linear filter operator CEN66-RK4-ENT-D4 was applied to

Kirchhoff vortex sound at low Mach number using a high order metric evalua-

tion of the coordinate transformation. SBP operators using the SAT method of

implementing the time-dependent physical BC was employed. Due to the large

disparity of acoustic and stagnation quantities in low Mach number aeroacous-

tics, the split Euler equations are formulated in perturbation form to minimize
numerical cancellation errors.

A very accurate numerical solution with a relatively coarse grid was ob-
tained using CEN66-RK4-ENT-D4 compared with the un-split (CEN66-RK4-

D4), and un-filter cases CEN66-RK4, CEN22-RK4 and CEN44-RK4. The

extra CPU due to the use of the split form of the inviscid flux derivatives is

more than compensated by the improved accuracy and stability of the numer-
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ical simulation, especially near regions of large gradients. For this weakly

nonlinear test case that does not require long time integration, the amount of

filter needed, although very small, is still important. Higher order filter opera-

tors and the formulation of the numerical BCs and filter operators in terms of

the entropy variables to satisfy a discrete energy estimate in a nonlinear sense
will be considered in the future.

6.4 Multiscale Complex Unsteady Viscous Compressible

Flows [64, 66]

Extensive grid convergence studies using WAV66-RK4 and ACM66-RK4 for

two complex highly unsteady viscous compressible flows are given in [64, 66].
The first flow is a 2-D complex viscous shock/shear/boundary-layer interaction.

This is the same problem and flow conditions studied in Dam & Tenaud [12].
The second flow is a supersonic viscous reacting flow concerning fuel breakup.
More accurate solutions were obtained with WAV66-RK4 and ACM66-RK4

than with WENO5-RK4, which is nearly three times as expensive. To illustrate

the performance of these nonlinear filter schemes, the first model is considered.

The ideal gas compressible full Navier-Stokes equations with no slip BCs at
the adiabatic walls are used. The fluid is at rest in a 2-D box 0 _< x, y < 1.

A membrane with an initial shock Mach number of 2.37 located at x = 1/2

separates two different states of the gas. The dimensionless initial states are

PL = 120, PL = 120/7; PR = 1.2, PR = 1.2/3', (6.1)

where PL, PL are the density and pressure respectively, to the left of x = 1/2,

and PR,PR are the same quantities to the right of x - 1/2. 3" - 1.4 and the

Prandtl number is 0.73. The viscosity is assumed to be constant and independent

of temperature, so Sutherland's law is not used. The velocities and the normal
derivative of the temperature at the boundaries are set equal to zero. This is

done by leaving the value of the density obtained by the one sided difference

scheme at the boundary unchanged, and updating the energy at the boundary

to make the temperature derivative equal to zero.
At time zero the membrane is removed and wave interaction occurs. An

expansion wave and a shock are formed initially. Then, a boundary layer is
formed on the lower boundary behind the fight going waves. After reflection, the

left going shock wave interacts with the newly formed boundary layer, causing
a number of vortices and lambda shocks near the boundary layer. Other kinds of

layers remain after the shock reflection near the fight wall. The complexity of

this highly unsteady shock/shear/boundary-layer interactions increases as the

Reynolds number increases.
As an illustration, we show here the difficult case of Reynolds number

Re -- 1000. The computations stop at the dimensionless time 1 when the
reflected shock wave has almost reached the middle of the domain, x - 1/2.
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Thenumericalresultsdiscussedhereareattime1withauniformCartesiangrid
spacingasdescribedbyDamandTenaud.Dueto symmetry,onlythelower
halfof thedomainis usedin thecomputations;symmetryBCsareenforced
attheboundaryy = 1/2. Figure6.12showsthecomparisonof a second-
orderMUSCLusingasecond-orderRunge-Kuttamethod(MUSCL-RK2)with
WAV66-RK4,ACM66-RK4andWENO5-RK4usinga1000x 500grid.Com-
paringwith theconvergedsolutionof WAV66-RK4andACM66-RK4using
3000x 1500(seebottomof figure)and4000x 2000grids(see[64]),one
canconcludethatWAV66-RK4exhibitsthemostaccurateresultamongthe
1000× 500gridcomputations.Wenotethat,for thisReynoldsnumber,the
unsteadyproblemisextremelystiff,requiringverysmalltimestepsandvery
long-timeintegrationsbeforereachingthedimensionlesstimeof 1.

6.5 1-D Shock-Turbulence Interactions Using the

Adaptive Numerical Dissipation Model

The dissipative model (5.32) is used to solve a simple, yet difficult, 1-D
compressible inviscid shock-turbulence interaction problem with initial data

consisting of a shock propagating into an oscillatory density. The initial data

are given by

(PL, UL, PL) = (3.857143, 2.629369, 10.33333) (6.2)

to the left of a shock located at x = -4, and

(PR, UR, pR)=(l+0.2sin(5x), 0, 1) (6.3)

to the right of the shock where u is the velocity. Fig. 6.13 show the compar-
ison between a second-order MUSCL-RK2 with a sixth-order central scheme

and the aforementioned numerical dissipation model using RK4 as the time

discretization (WAV66-RK4-D8). The parameter d = 0.002 is scaled with the

spectral radius of the Jacobian of the flux function. Note that the eighth-order

dissipation is a filter, and is different from the CEN66-D8 used in Section 6.3

where the dissipation is part of the scheme. The solution using a second-order

uniformly non-oscillatory (UNO) scheme on a 4000 uniform grid is used as

the reference solution (solid lines on the first three sub-figures). The bottom

of the right figures show the density and Lipschitz exponent distribution for

the WAV66-RK4-D8 using 400 grid points. Comparing our result with the

most accurate computation found in the literature for this problem, the current

approach is highly efficient and accurate using only 800 grid points without

grid adaptation or a very high order shock-capturing scheme. For the present

computation, the WAV66-RK4-D8 consumed only slightly more CPU than the

second-order scheme MUSCL-RK2. With the eighth-order dissipation filter
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Figure 6.12. Comparison: MUSCL-RK2, WAV66-RK4, WAV66-RK4 and WENO5-RK4 for

Re = 1000. Density contours using 1000 x 500 and 3000 x 1500 grids.
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order B-spline wavelet.

turned off (i.e., only the nonlinear filter remains - WAV66-RK4), the computa-

tion is not very stable unless a finer grid and smaller time step is used. Turning

on the entropy splitting away from the shocks helps to reduce the amount of the

eighth-order dissipation coefficient [65].

7. Concluding Remarks

An integrated approach for the control of the numerical-dissipation/filter

in high order schemes for numerical simulations of multiscale complex flow
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problems is presented. The approach is an attempt to further improve nonlinear

stability, accuracy and efficiency of long-time numerical integration of com-

plex shock/turbulence/acoustics interactions and numerical combustion. The

required type and amount of numerical-dissipation/filter for these flow prob-

lems are not only physical problem dependent, but also vary from one flow

region to another. Among other design criteria, the key idea consists of au-

tomatic detection of different flow features as distinct sensors to signal the

appropriate type and amount of numerical-dissipation/filter for non-dissipative

high order schemes. These scheme-independent sensors are capable of dis-

tinguishing shocks/shears, turbulent fluctuations and spurious high-frequency
oscillations. In addition, these sensors are readily available as an improvement

over existing grid adaptation indicators. The same shock/shear detector that

is designed to switch on the shock/shear numerical dissipation can be used to
switch off the entropy splitting form of the inviscid flux derivative in the vicinity

the discontinuous regions to further improve nonlinear stability and minimize

the use of numerical dissipation. The rest of the sensors in conjunction with

the local flow speed and Reynolds number can also be used to adaptively de-

termine the appropriate entropy splitting parameter for each flow type/region.

The minimization of employing very fine grids to overcome the production

of spurious numerical solutions and/or instability due to under-resolved grids

is also illustrated [79, 17]. Test examples shown are very encouraging. Full

implementation of the approach for practical problems is in progress.
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Appendix

We here give boundary modified numerical dissipation operators, such that

the semi bounded property is satisfied for the total operator. The operators

are derived by splitting the periodic operator into one boundary part and one

interior part,

(D+D-)per = (D+D-)b + (D+D-)I. (A.1)

The interior operator (D+ D_)I has zeros in all row s where the centered operator

can not be applied. We define the boundary modified operator as

(D+D_) q : (D+D_)_e,.(D+D_) p
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if q = 2p is even. The zero terms on the boundary of the interior operator,

will destroy the periodic terms, so that the boundary modified operator does not

have any periodic wrap around terms. If q - 2p + 1 is odd, we define

(D+D_) q = (D+D_)Per(D+)per(D_)I(D+D_)f.

The semi boundedness then follows by applying the summation by parts prop-

erty for the periodic operator, or for the case of q even,

(uj,(D+D-)quj)h = -((D+D_)_eTuj, (D+D-)PIUj)h =

((D+D_ p-- )IUj, (D+D_)PIUj)h <_ 0

where the last equality follows since the interior operator in the scalar product

kills all boundary terms in the periodic operator. The case with odd q can be

treated similarly.

The order of the operator is reduced on the boundary. To have correct scaling,
as numerical dissipation, the 2qth derivative should be multiplied by h 2q- 1, thus

affecting the accuracy up to order 2q - 1. However, the boundary terms will

be reduced to qth derivatives, and thus have order q - 1 on the boundary. For

example, the fourth order operator will be third order in the interior, and first

order on the boundary. The sixth order operator will be fifth order in the interior,

and second order on the boundary, etc. We present below examples for orders

4, 6, and 8.

Fourth derivative

1 -2 1 0 0 0 0 0 0 0

--2 5 --4 1 0 0 0 0 0 0
01 -4 6 -4 1 0 0 0 0

0 1 -4 6 -4 1 0 0 0 0
00 0 1 -4 6 -4 1 0 0

• , ,

Sixth derivative

-1 3 -3 1 0 0 0 0 0 O_
3 -10 12 -6 1 0 0 0 0 0

-3 12 -19 15 -6 1 0 0 0 0

1 -6 15 -20 15 -6 1 0 0 0

0 1 -6 15 -20 15 -6 1 0 0

0 0 1 -6 15 -20 15 -6 1 0

. ..
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Eighth derivative

53

( 1 -4 6 -4 1 0 0 0 0 0_
-4 17 -28 22 -8 1 0 0 0 0

6 -28 53 -52 28 -8 1 0 0 0

-4 22 -52 69 -56 28 -8 1 0 0

1 -8 28 -56 70 -56 28 -8 1 0

0 1 -8 28 -56 70 -56 28 -8 1
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